Molar Refraction Extension of the Eisenlohr-Denbigh System of Correlation to Liquid Organoboron Compounds

RALPH SAYRE¹

Stamford Laboratories, Central Research Division, American Cyanamid Co., Stamford, Conn.

Using literature data for 231 organoboron compounds Lorenz-Lorentz and Eisenlohr refraction constants have been computed by least squares for seven species of boron bonds and for the $C_{al} C_{ar}$ bond. The coefficients of variation show that the Eisenlohr system is in definitely better agreement with the observed measurements.

DURING recent years there has been a growing interest in the correlation of refractive index and structure of the liquid organic compounds of boron. The published work has been based exclusively on the classical Lorenz-Lorentz equation. In 1954, Torssell (59) derived values ranging from 3.05 to 5.27 for the atomic refractivity R_L of boron in various types of compounds; subsequent values of 2.65, 2.28, and 3.0 were proposed by Abel and others (2), by Gerrard, Lappert and Mountfield (21), and by Aubrey and Lappert (4), respectively.

In 1958, when the convenient and logical Denbigh bond refraction concept (13, 62) had attained wide acceptance, McCusker and Ostdick (45) published values for the Lorenz-Lorentz refractivities of B—O and B—Cl bonds, as did Hennion (27) for that of the B—C bond. In the same year, Christopher and Tully (10) calculated values for the refractivities of two boron-containing octets and of B—C_{al} and B—C_{ar} bonds. A more comprehensive study based on the literature data for 172 boron compounds was made in in 1960 by Weidmann and Zimmerman (65), who assigned refractivity values to six species of boron-containing octets and to three species of boron bonds.

The present investigation was prompted by the successful utilization of the Eisenlohr molar refraction product (15) in conjunction with the Denbigh bond system in correlating refractive index with the structure of liquid organic compounds of phosphorus (54) and of tin (55). Atomic, group, and bond values from Vogel's tables (63, 64) have been used in this work for elements other than

boron. The following special values for $-\dot{C}H$ and $-\dot{C}$

groups and atomic values R_L and R_E for boron were calculated by the least squares method from data on the first 231 boron compounds in Table II, including 16 for which no density measurements are available and which are perforce omitted in calculations based on the Lorenz-Lorentz equation:

¹Retired. Present address, 381 Winthrop Ave., New Haven 11, Conn.

Group or Atom	Atomic Refractivity (Lorenz-Lorentz)	Atomic Refraction Constant (Eisenlohr)
-CH	3.66	22.80
C	2.50	24.57
B	3.44	19.41

More usefulness and interest attach to the corresponding bond values. Thanks largely to Torssell's work (59) on tolyl derivatives of boron, sufficient data are available for least squares computation of values for the C_{al} — C_{ar} bond, which is not included in Vogel's table (64), as well as for the seven species of boron bonds listed in Table I.

In view of the almost universal adoption at the present time of the Denbigh bond mode of correlation, and in order to save space, the results based on the atomic and group parameters are omitted form Table II, which presents literature data and observed molar values for each compound listed, together with molar values calculated from the bond parameters of Table I in accordance with the Lorenz-Lorentz and with the Eisenlohr systems. For an

Table I.	Calculated	Parameters
----------	------------	------------

	Bond Ref: (Lorenz-Le	ractive orentz)	Bond Refractie (Eisenl	on Constant ohr)
Bond	No. of Iterations	Value	No. of Iterations	Value
$C_{al} - C_{ar}$	32	1.424	33	14.26
B-C _{al}	159	2.032	165	13.59
B-C _{ar}	61	3.068	61	16.74
B-Cl	64	6.946	64	56.30
B—F	13	1.681	13	26.98
B—N	59	1.958	65	14.90
ВО	303	1.613	332	17.27
BS	15	5.378	17	33.77

		Lit.						Lorenz- Molar Re	Lorentz fractivity ^ª	Eisenloh Refractio	ır Molar 1 Product ⁶
No.	Compound	Ref.	Μ	t	n_{D}^{ι}	d_4^i	$n_{\mathrm{D}}^{^{20}}$	Obsd.	Calcd.	Obsd.	Calcd.
	$(\mathbf{C}_2\mathbf{H}_3)_3\mathbf{B}$	(57)	98.006	20		0.684	1.3971	34.513	35.124	136.92	137.40
C) r	$(\mathbf{C}_{\mathbf{H}_2} = \mathbf{C} + \mathbf{C} + \mathbf{H}_2)_{3} \mathbf{B}$	(51) (39)	134.039 140.087	20 22 5	1 4135	0.7689 0.7995	1.4500 1 4147 ^c	46.848 48 400	47.634 49.068	194.36 198.18	195.57 199.90
94	$(C_4H_9)_{aB}$	(57)	182.168	20		0.751	1.4285	62.470	63.012	260.23	261.00
5	$[(CH_3)_2 CHCH_2]_3 B$	(32)	182.168	22.8	1.4188	0.7400	1.4201°	62.141	63.012	258.70	261.00
9	$[C_2H_5CH(CH_3)]_3B$	(26)	182.168	25	1.4349	0.7658	1.4371°	62.060	63.012	261.79	261.00
7	$[(\mathbf{CH}_3)_{3}\mathbf{C}]_2(\mathbf{C_4H_9})\mathbf{B}$	(28)	182.168	25	1.4373	0.7608	1.4395'	62.768	63.012	262.23	261.00
œ	$ (CH_3)_3C (CH_3)_2CHCH_2 (C_5H_{11})B$	(27)	196.195	25	1.4296	0.7506	1.4318°	67.467	67.660	280.91	281.60
69	$(CH_3)_3C [_2(C_5H_1)B$	(28)	196.195 010.900	22 52	1.4397	0.7668	1.4419	67.393 79.077	67.660 70.000	282.89	281.60
9 :	$[(CH_3)_{3}C](C_5H_1)_{2}B$	(72)	272.012	07 C	1.4333	0.720	1.4355	72.075	72.308	301.77	302.20
11	(CH.), CHCH., CH., LR	(27) (32)	224.249 224.249	20 22.6	1.4321	0.7607	1.4326 1.4333°	76 477	76.956	321.30 321.42	322.80
13	$(sym-C_sH_{11})_{3}B$	(57)	224.249	20		0.790	1.4455	75.623	76.956	324.15	322.80
14	$(\tilde{\mathbf{C}}_{6}\mathbf{H}_{13})_{3}\mathbf{B}$	(57)	266.330	20		0.742	1.4300	92.722	90.900	380.85	384.60
15	$(\mathbf{C}_{12}\mathbf{H}_{25})_3\mathbf{B}$	(57)	518.816	20	4 4 5	0.817	1.4910	183.915	174.564	773.55	755.40
16	((CH ₃), CHCH, 2BF	(29)	144.052	22 5	1.3816	0.7662	1.3836	43.713	43.689	199.34	200.98
17		(3) (73)	169.267	22 22 26	1 4160	1.2759	1.5452 1.4189°	41.957	39.074 48 954	261.55 997.63	251.34 930.30
01			200.489	38	0011-1	1 116	1 6118	62 433	69.097	323.15	316.52
20	(C(H_R)) C,H_BF,	(36)	105.936	52 22	1.3268°	0.8510	1.3290	25.172	24.367	140.79	140.95
21	$C_{s}H_{11}BF_{2}$	(42)	119.963	25	1.3409	0.8550	1.3431°	29.480	29.015	161.12	161.55
22	$C_6H_sBF_2$	(44)	125.926	25	1.4441	1.087	1.4463°	30.779	30.938	182.13	184.06
23	$p ext{-} ext{CH}_{s} ext{C}_{s} ext{H}_{s} ext{BF}_{z}$	(44)	139.953	25	1.4535	1.055	1.4557°	35.890	35.714	203.73	206.06
24	$C_{s}H_{n}BCI_{s}$	(41)	152.877	25	1.4204	0.9804	1.4226°	39.494	39.543	217.48	220.20
52 52	C,H,BCl,	E	158.840	20		1.202	1.5430	41.653	41.467	245.09 040 FF	242.71
92 6	CeHuBCle A H BAI	(47)	104.888 166 004	20 26	1 4961	1.10705 0.0705	1.4/10	41.033	41.979	242.00 00 000	242.20
17	СеливО∪г љ-СН.С.Н.RCI.	(14)	172.867	30	1.5452	0.2705	1.5497°	47.130	44.131 46.243	267.89	264.71
5 <u>8</u>	(C ₄ H ₉)(C ₄ H ₆ O)BF	(8)	160.052	20		0.888	1.3900	42.725	44.730	222.47	222.12
30	$(C_6H_5)(C_4H_9O)BF$	(8)	180.042	20		0.972	1.4565	50.399	51.302	262.23	265.23
31	$(C_4H_9)(C_4H_5O)BCl$	(8)	176.509	20		0.898	1.4170	49.430	49.995	250.11	251.44
32	(C ₆ H ₅)(CH ₃ O)BCI	(12)	154.418	50		1.086	1.5168	43.003	42.622	234.22	232.75
29 F		(21)	108.445 909 804	06 90	1.5050 ⁻	1.004 1.158	1.5032 1 5965	49.762 53 293	47.270 59 104	203.21	203.30
5 5	(C.H.)[(CH.).CHO]BCI	(71)	182.472	88		1 022	1 4928	51 871	51 918	272.39	273 95
36	(CeHe) (C.H.a) BCI	(8)	196.499	88		1.021	1.4996	56.567	56.566	294.67	294.55
37	$(C_{6}H_{5})$ $(C_{13})_{2}CHCH_{2}O$ BCI	(12)	196.499	20		1.009	1.4920	56.500	56.566	293.18	294.55
38	(C_6H_5) ($(CH_3)_3CO$]BCI	(12)	196.499	20		1.021	1.4955	56.173	56.566	293.86	294.55
<u> 3</u> 6	$(C_{6}H_{5})(C_{6}H_{5}O)BCI$	(12)	216.489	20		1.151	1.5670	61.443	62.102	339.24	334.51
40	(C ₆ H ₅)(C ₆ H ₂ CH ₂ O)BCI	(12)	230.516	16	1.5638°	1.136	1.5620	65.782	66.878	360.07	356.51
41	(CeHs) (o-CH3CeH40) BCI	(12)	230.516	16	1.5638'	1.156	1.5620	64.644	66.878	360.07	356.51
47 73		(21)	252.607 959.607	02 8		0.976 A AGO	1.4900	74.829 75 596	75.158 75.158	376.38 966.90	376.95
44	(Cetts) [Cetts), CHCH, O [BC]	(77)	202.547	20		0.951 0.951	1.4475	76.961 56.961	620.029	293.19	294.04
45	$[(iso-C_3H_7)_2B]_2O$	(52)	209.996	3 1 2		0.7761	1.4222	68.787	68.650	298.66	300.14

Table II. Molar Values for Organoboron Compounds

		Lát.						Lorenz- Molar Rei	Lorentz îractivity [«]	Eisenloh Refraction	r Molar Product ⁶
No.	Compound	Ref.	Μ	t	n_{D}^{\prime}	$d_4^{c_1}$	n ²⁰	Obsd.	Calcd.	Obsd.	Calcd.
46	$\left[\left(\mathbf{C}_{i} \mathbf{H}_{g} \right)_{g} \mathbf{B} \right]_{g} \mathbf{O}$	(38)	266.104	25	1.4258	0.7933	1.4280°	85.913	87.242	380.00	382.54
4.1	[(tso-C,H9)2B]2U	(52)	266.104	20		0.7723	1.4230	87.741	87.242	378.67	382.54
40	עקרע - רנגערין אַנע הירע - רעז אַרע	(22)	322.212 160 01 0	02		0.7934	1.4331	105.569	105.834	461.76	464.94
43 50		(9) (2)	010.001	02		1.1100	1.0032	39.322	35.541	238.77	222.85
3 5	(CH ₃ = CHCH ₃),BOC,H _a	(0) (21)	166.089	02		0.11.0	1.4642 1.4202	40.107 52.059	44.8// 59 901	200.48 097 ee	201.98
52	(C.H.), BOC, H.	(52)	170.114	07 06		7600-0	1 4105	00.002 59 504	03.0UI 54 757	231.33	238.92
8	$(C_4H_9)_{3}BOCH_2CH = CH_2$	(24)	182.125	$^{50}_{20}$		0.8158	1.4279	57 424	58.927	260.06 260.06	240.94 960 33
54	(C,H ₉) ₋ BOC,H ₉	(52)	198.168	20		0.8077	1.4222	62.373	64.053	281.44	282.14
55	(C,H ₃) ₂ BOCH ₂ CH(CH ₃) ₂	(24)	198.168	20		0.8004	1.4178	62.367	64.053	280.96	282.14
22 I	$(C_4H_9)_2BOC(CH_3)_3$	(24)	198.168	20		0.7998	1.4170	62.309	64.053	280.84	282.14
57 7.0	(C(H ₉) <u>2</u> BOC ₆ H ₅ (C II) DOGIL/CII)C II	(52)	218.158	20		0.8798	1.4760	69.939	69.589	322.00	322.10
001		(24)	254.276	50		0.8099	1.4279	80.758	82.645	363.08	364.54
60 90	(C5H3)2DOOH3 (C2H3).ROCH.	(6) (6)	180.109	02 06			1.4717			265.07	262.68
61	$(CH_{*})(C_{*}H_{*})BOC_{*}H_{*}$	(2)	162.050	25	1 4880	0 8985	1.4200 1.4909°	51 963	59 033	01.202	201.04 949 95
62	$(C_2H_5)(C_6H_5)BOC_4H_5$	(19)	190.104	22	1 4864	0.8940	1.486°	61 004	027.000 61 399	989 QQ	242.00 984 05
63	(C_6H_5) (0- $CH_3C_6H_4)BOC_3H_7$	(09)	238.148	$^{25}_{25}$	1.5440	0.9749	1.5462°	77 123	77 394	368.99	369.76
64	$(0-\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4)$ (<i>m</i> -CH ₃ C ₆ H ₁) BOC ₃ H ₇	(00)	252.175	25	1.5407	0.9646	1.5429°	82.113	82.100	389.08	391.76
65	$(o-\mathrm{CH}_{\mathrm{s}}\mathrm{C}_{\mathrm{6}}\mathrm{H}_{4})$ $(p-\mathrm{CH}_{\mathrm{s}}\mathrm{C}_{\mathrm{6}}\mathrm{H}_{4})$ BOC ₃ H ₇	(09)	252.175	25	1.5420	0.9648	1.5442°	82.260	82.100	389.41	391.76
99	$(o-CH_3C_6H_4)(p-CIC_6H_4)BOC_3H_7$	(09)	272.597	25	1.5522		1.5544°			423.73	422.69
67	$(C_4H_9)_2BOCH_{2^-})_2$	(38)	310.158	25	1.4340	0.8266	1.4371°	97.715	98.162	445.73	445.80
68 2	$ (iso-C_5H_{11})_2BOCH_{2^-} _2$	(38)	366.266	25	1.4378	0.8267	1.4400°	116.257	116.754	527.42	528.20
69 i	$(C_3H_7)_2BSC_3H_7$	(48)	172.153	20		0.8241	1.4546	56.635	57.024	250.41	252.22
0/	(CaH7) ₂ BSC4H5 (C U) BSC U	(48)	186.180	20		0.8286	1.4598	61.518	61.672	271.79	278.82
1.1		(40)	914 924	02 06		79767 U	1.0134	6/0/10	207.70	313.20 911 67	312.78 214.09
73	(iso-C ₄ H _a),BSC ₄ H _a	(48)	214.234	20^{20}		0.8213	1.4572	71.068	70.968	312.18	314.02 314.02
74	(iso-C,H.,),BSC,H,	(48)	242.288	$\frac{1}{20}$		0.8219	1.4551	79.997	80.264	352.55	355.22
75	(C ₆ H ₅) ₂ BSC ₄ H ₆	(48)	254.214	20		1.001	1.5871	85.361	84.112	403.46	400.24
76	$CH_2 = CHCH_2B(OCH_2CH = CH_2)_2$	(51)	166.039	20		0.8931	1.4352	48.532	49.716	238.30	237.85
77	$CH_2 = CHCH_2B(OC_4H_9)_2$	(21)	198.125	20		0.8413	1.4230	59.969	59.968	281.93	281.47
78	C,H,BOCH,CH,O	(38)	127.990	25	1.4129	0.9141	1.4151	34 907	35 150	181 12	184.80
79	$C_iH_sB(OC_iH_s)_2$	(2)	214.168	20		0.8300	1.4169	64.876	65.094	303.46	303.28
80	$C_4H_9B(OC_9H_{17})_2$	(2)	326.384	20		0.8036	1.4312	105.175	102.278	467.12	468.08
81	$C_5H_*B(OCH_3)_2$	(6)	142.017	20			1.4300			203.08	200.85
22 S	$C_{5}H_{11}B(UCH_{3})_{2}$	(6)	144.033	07 I			1.4025			202.01	200.28
22 3	$C_{6}H_{5}B(0CH_{3})_{2}$	(59)	149.996 178 or o	25 25	1.4926	1.0024	1.4948	43.458	43.777	224.21	222.79
6 7		S	1/ð.UðU	07	10111	0.9540	1.4785	52.877	53.U/3	263.25	263.99
00 90 90	U6H5D(UCH2UH2U)2 C.H.R(OCH2CCI)3.	(21)	240.345 384 744	06 90	Sel6.1	1.102	1.5135	67.608	62.741	3/3.76 590.02	369.85 501 57
3 2	C.H.B(OC.H.).	(1)	206 104	92 92	1 4738	0 9997	1 4760	69 980	69 960	003.30 204 91	905.10
88	C.H.B[OCH(CH ₁),],	(12)	206.104	20	0011-1	0.9283	1.4632	61 174	62.369	301.57	305.19
68	$C_6H_5B(OC_4H_3)_2$	(<u>1</u>)	234.158	20		0.9245	1.4751	71.323	71.665	345.41	346.39
90	C ₆ H ₅ B OCH ₂ CH(CH ₃) ₂] ₂	(2)	234.158	20		0.9163	1.4711	71.441	71.665	344.47	346.39

Table II. Molar Values for Organboron Compounds (Continued)

346.39 346.39	387.59 470.30	511.19	511.19	345.88	244.79	244.79	244.79	285.99	285.99	285.99	327.19	327.19	327.19	368.39	368.39	368.39	550.48	437.11	346.45	367.05	387.65	410.16	000	329.10	240.40 010.00	242.00 000 01	90.202 90.206	24.002 984.08	204.00 394.04	409.14	348.11	532.09	168.09	209.29	245.37	324.29	327.77	407.69	267.88	346.80	324.62	407.02	346.08	324.83
342.69 343.23	384.87 475 80	509.17	507.99	345.49	244.26	245.18	245.54	283.49	284.62	284.56	324.54	325.33	325.62	365.53	366.47	366.82	546.50	436.30	347.39	367.87	387.13	411.79	10 200	335.87	242.04	241.01 244.69	204.03 901 49	04.107	395.78	406.06	351.35	530.71	167.33	208.28	243.90	327.76	325.34	417.94	266.24	352.53	326.20	408.34	346.87	327.42
71.665 71.665	80.961 92.289	108.849	108.849	72.178	48.553	48.553	48.553	57.849	57.849	57.849	67.145	67.145	67.145	76.441	76.441	76.441	120.870		74.276	78.924	83.572	85.496		59.170 16.010	010.06	20.972 29 500	006.20	41.400 66 968	71 804	93.443	75.554	121.185	34.933	44.229	55.581	74.553	71.753	85.245	57.504	76.476	68.540		74.583	70.945
71.306 71.452	80.933 90 130	108.331	108.555	72.438	48.147	48.381	48.495	57.696	58.080	58.043	66.970	67.261	67.425	76.184	76.484	76.669	119.620		74.462	79.219	83.317	85.526	001	63.59Z	55.214 FF 600	00.99U	010-010 47-905	41.000 65.695	79.531	93.048	76.296	121.200	34.669	43.964	55.069	74.042	73.989	87.744	57.183	74.839	68.221		73.472	70.701
1.4635 1.4658 1.4658	1.4678 1.5745	1.4700	1.4666	1.4383	1.4892'	1.4948'	1.4970°	1.4759'	1.4818^{c}	1.4815'	1.4743°	1.4779^{c}	1.4792'	1.4728'	1.4766°	1.4780°	1.4288	1.5353	1.4956	1.4936	1.4871	1.5464		1.5410	1.4097	1.4200 1.5050	1.472	1 4309	1 5001	1.4495	1.5132	1.4568	1.4941	1.4872	1.4337	1.4488	1.4381	1.5700	1.5120	1.5183	1.4233	1.4313°	1.4500	1.4348
0.9053 0.9073	0.9003	0.895	0.8847	0.8710	0.9798	0.9846	0.9860	0.9351	0.9388	0.9389	0.9206	0.9226	0.9225	0.9099	0.9126	0.9127	0.824	1.5322	0.9106	0.9045	0.8988	0.9865		1.077	0.0000	0.1124 0.0050	0.0003 0.7666	0.7758	0.4400	0.8083	0.9150	0.8183	0.9406	0.9165	0.8040	0.8192	0.8028	0.9954	0.924	0.9406	0.856		0.8750	0.8419
	1.5763°	1.4718			1.4870	1.4926	1.4948	1.4737	1.4796	1.4793	1.4721	1.4757	1.4770	1.4706	1.4744	1.4758																										1.4309		
50 50 50 50 50 50 50 50 50 50 50 50 50 5	20 19	16	20	20	25	25	25	25	25	25	25	25	25	25	25	25	07.	17	50	50	20	20	c c	02 0	99	02.05	02 06	00	03 Q	20	20	20	20	$\frac{20}{3}$	20	20	20	20	20	20	50	$\frac{21}{2}$	20	20
234.158 234.158	262.212 309 199	346.374	346.374	240.206	164.023	164.023	164.023	192.077	192.077	192.077	220.131	220.131	220.131	248.185	248.185	248.185	382.492	284.218	232.273	246.300	260.327	266.290		217.953	160.090	100.100	141 076	197 184	171 174 171 174	280.136	232.190	364.298	111.995	140.049	170.119	226.227	226.227	266.207	176.082	232.190	229.184	285.292	239.222	228.200
666	S (8)	(12)	(2)	(47)	(5.9)	(59)	(66)	(59)	(59)		(59)	(69)	(59)	(59)	(59)	(59)	(2)	(37)	(20)	(50)	(50)	(50)	1	(c)	(11)	(70) (20)	(76)	(59) (59)	(48)	(48)	(48)	(48)	(20)	(90)	(44)	(49)	(4.9)	(49)	(46)	(50)	(23)	(23)	(47)	(22)
$C_6H_5B OC(CH_4)_1 _2$ $C_6H_5B OCH(CH_4) _2$ $C_6H_5B OCH(CH_4) _2H_5 _2$	C6H3B(UCH2C(CH3)3]> C2H,B(OCH,C2H3).	$C_6H_5B(OC_8H_{17})_2$	$C_6H_5B[OCH(CH_3)C_6H_{13}]_2$	$C_{6}H_{1}BOCH_{2}CH(CH_{3})_{2} _{2}$	o-CH ₃ C ₆ H ₄ B(OCH ₃) ₂	m-CH ₃ C ₆ H ₄ B(OCH ₃) ₂	p-CH ₃ C ₆ H ₄ B(OCH ₃) ₂	$(h-\mathbf{C}\mathbf{H}_3\mathbf{C}_6\mathbf{H}_4\mathbf{B}(\mathbf{O}\mathbf{C}_2\mathbf{H}_5))_2$	m-CH ₃ C ₆ H ₄ B(OC ₂ H ₅) ₂	$p ext{-} ext{CH}_{s} ext{C}_{6} ext{H}_{4} ext{B}(ext{OC}_{2} ext{H}_{s})_{2}$	o-CH ₃ C ₆ H ₄ B(OC ₃ H ₂) ₂	m-CH ₃ C ₆ H ₄ B(OC ₃ H ₇) ₂	p-CH ₃ C ₆ H ₄ B(OC ₃ H ₇) ₂	o-CH ₃ C ₆ H ₄ B(OC ₄ H ₉) ₂	m-CH ₃ C ₆ H ₄ B(OC ₄ H ₉) ₂	p-CH ₃ C ₆ H ₄ B(OC ₄ H ₉) ₂	$C_{sH_{17}B}(0C_{sH_{17}})_2$	$\alpha - (C_{10}\mathbf{H}_7\mathbf{B}(\mathbf{OC}_4\mathbf{H}_9)_2$	$C_3H_7B(SC_4H_9)_2$	$C_1H_9B(SC_1H_9)_2$	iso - $C_5H_B(SC_4H_9)_2$	$C_6H_5B(SC_4H_9)_2$		(ΟΙΔΠΕΙΔΗ):20ΝΟΠεΟΠεΟΠεΟΠεΟΠε (ΔΠ ΠΩΠΩΠ) ΣΝΙΩΛ Π			(Call) 2DATI Cells (C.H.), RNH,	(C.H.), BNHC.H.	(C.H.), BNHC.H.	[(C,H,,),,BNH-],	(C,H ₃) ₂ BNHNHC ₆ H ₅	$[(C_iH_{ij})_2BNHCH_2CH_2CH_{2}-]_2$	C ₃ H ₂ BNHCH ₂ CH ₂ NH		$(solution \mathbf{D}(\mathbf{NHC}_{2}\mathbf{H}_{3}))$	$180-C_5H_{IIB}[N(C_2H_5)_2]_2$	$180-C_5H_{11}B[NHCH_2CH(CH_3)_2]_2$	$(so-C_5H_{11}B(NHC_6H_5))_2$	CeH ₅ B(NHC ₂ H ₅) ₂ C H D[N/C H) 1	CaHaB/IN(C2Ha)2/2	(C2H3) 2NB(OC4H3) 2 (CTT) ND(OC4T)	(UtH9)2NB(UCtH9)2 A II PINAA II / KATI AII/AII / I	$C_{6}H_{1}B[N(C_{3}H_{5})_{2}][OCH_{2}CH(CH_{3})_{2}]$	
= 8 2																																												

(Continued on page 248)

		Lit						Lorenz-] Molar Ref	Lorentz fractivity ^a	Eisenlo [†] Refractior	ır Molar 1 Product ⁶
No.	Compound	Ref.	W	t	$n_{1)}^{t}$	d_1'	$u_{\mathrm{D}}^{\mathrm{ss}}$	Obsd.	Calcd.	Obsd.	Calcd.
138	$\left[(\mathbf{C}_{1}\mathbf{H}_{3})_{2}\mathbf{N}\right]_{2}\mathbf{BOC}_{4}\mathbf{H}_{3}$	(22)	340.416	20			1.4470			492.58	489.63
140	(C2H5)2N (C4H9U)BCI (CH_NH)_R	(23)	191.525	02 Q		0.8871	1.4275	30,383	30 949	273.40 146.06	212.18
141	$(C_2H_nNH)_3B$	(4) (4)	143.054	$^{20}_{20}$		0.833	1.4380	45.082	44.893	205.71	206.65
142	$\left[\left(\overline{\mathbf{C}_{2}}\mathbf{H}_{5}\right)_{2}\mathbf{N}\right]_{3}\mathbf{B}$	(22)	227.216	20		0.826	1.4450	73.212	73.351	328.33	325.03
143	$[(CH_3)_2 CHNH]_3 B$	(4)	185.135	20		0.8000	1.4267	59.380	58.837	264.13	368.45
144	(C,H,NH),B	(4)	227.216	20		0.8347	1.4462	72.619	72.781	328.60	330.25
145	C ₂ H ₅ (CH ₃)CHNH _B B	(4)	227.216	20		0.8186	1.4355	72.501	72.781	326.17	330.25
140	[(CH3) ₃ CNH] ₃ B [<i>IC</i> _H_1_NLR	(4)	227.216 395 540	0Z 0Z		0.7971	1.4272	198 459	127.181	524.20 576.69	520.25 579 93
147 148	[(C4H9/2M])D (C4H,CH,NH),B	(77)	329.267	20		0.0333	1.5805	104.645	123.121	520.41	526.12
149	C4H,0DFr	(33)	121.936	22	1.3858	1.122	1.3867	25.562	25.407	169.09	162.09
150	$C_2H_5OBCI_2$	(2)	126.796	20		1.125	1.3968	27.130	26.640	177.11	179.54
151	CH ₂ ClCH ₂ OBCl ₂	(14)	161.245	18	1.4438°	1.358	1.4429	31.528	31.474	232.66	232.47
152	C ₃ H ₂ OBCl ₂ CH CICH CH OBCl	(20)	140.823	50 50		1.138	1.4094	30.620 35 951	31.288 36 199	198.48 959 05	200.14
154	CHPCICHPCHPCDUP C.H.(DRCI),	(06)	154 850	07		1 079	1 4161	36.022	35 936	219-28	200.01
155	(CH.), CHCH, OBCl,	(20)	154.850	20		1.046	1.4088	36.584	35.936	218.15	220.74
156	CH ₂ ClCH ₂ CH ₂ CH ₂ OBCl ₂	(14)	189.299	20		1.254	1.4522	40.739	40.770	274.90	273.67
157	$C_5H_{11}OBCI_2$	(2)	168.877	20		1.056	1.4170	40.216	40.584	239.30	241.34
158	(CH ₃) ₃ CCH ₂ OBCl ₂	(20)	168.877	20		1.032	1.4097	40.518	40.584	238.07	241.34
159	CH2CICH2CH2CH2CH2OBCI2	(2) 	203.326	20		1.228	1.4533	44.778	45.418	295.49	294.27
160	C ₈ H ₁₇ OBCI ₂	(07)	210.958	02 02		1.015 0.079	1.4316	53.865 22.000	04.528 04.02	302.01	303.14
101		(7)	104-001 905.099	07 8	1 4560°	1 390	1.6070	00.090 19 979	02.443 111 04	109.30	130.18
102 163	(CHFOLH20)2DCI (C.H-0)2BCI	(34)	164.455	20	00011	0.959	1.4028	41.829	41.739	230.70	231.38
164	(CH2CICH2CH2O)2BCI	(2)	233.353	20		1.240	1.4564	51.194	51.407	339.86	337.24
165	(C ₄ H ₉ O) ₂ BCl	(18)	192.509	20		0.941	1.4141	51.132	51.035	272.23	272.58
166	(CH ₃) ₂ CHCH ₂ O ₂ BCI	(18)	192.509	20		0.938	1.4056	50.368	51.035	270.59	272.58
167 168	[U2H3CH(CH3)U]2BCI (CH2CHCH2CH2CH20)2BCI	(34) (9)	192.309 261 407	02 02 02 02		0.924	1.4017	50.697 60 873	60.703 60.703	269.84 382 23	272.58
169	$(C_5H_{11}O)_2BCI$	(3) (3)	220.563	20		0.933	1.4202	59.849	60.331	313.24	313.78
170	[(CH ₃) ₃ CCH ₂ O] ₂ BCI	(34)	220.563	20		0.906	1.4102	60.343	60.331	311.04	313.78
171	(CH ₂ ClCH ₂ CH ₂ CH ₂ CH ₂ O) ₂ BCl	(2)	289.461	20		1.127	1.4621	70.623	69.999	423.22	419.64
172	[(CH ₃) ₃ CCH(CH ₃)O] ₂ BCI	(34)	248.617 204 795	20		0.901	1.4165	69.318 00.000	69.627	352.17	354.98
174	C.H.,CH(CH,)O],BC)	(34)	304.725	02 Q		0.897	1 4277	87.347	88 219	435.06	437.38
175	(CH ₃ O) ₃ B	(61)	103.925	20		0.928	1.3610	24.777	24.302	141.44	139.02
176	$(C_2H_5O)_3B$	(11)	146.006	20		0.8635	1.3741	38.624	38.246	200.63	200.82
177	$(CH_2CICH_2O)_3B$	(31)	249.353 352.700	20 20		1.2780 1 496	1.4556 1 4836	52.998 67 403	52.748 67 950	362.96 593.97	359.61 518 40
179	(CH42CH2O)3D (CH3CH2CH2O)3B	(56)	236.087	28	1.4023'	1.0096	1.4059	56.987	57.062	331.91	329.80
180	$(CH_2 = CHCH_2O)_3B$	(25)	182.039	25	1.4230	0.9280	1.4252°	49.952	50.756	259.44	258.99
181 189	(C ₃ H ₂ O) ₃ B [(CU) CHO]2B	(3) (35)	188.087	20		0.8576	1.3948 1.4057	52.556	52.190	262.34 264.39	262.62 262.62
701		(00)									12121

Table II. Molar Values for Organboron Compounds (Continued)

	421.41	080.20 700.00	02.080	24.42 294.42	24.420 294.40	24.420 24.40	10 001	12.004	386.99	386.99	22.006 22.006	386.22	386.99	386.22	545.01	448.02	448.02	448.02	448.02	448.02	448.02	510.29	509.82	572.09	571.69	571.69	571.69	605 99	818.82		205.94	096 EA	455 55	517.35	517 35	833.88	005 00	220.30	245.90	266.50	287.10	287.10
101.01	424.65	030.28 207 FF	00700 00700	393 04	391.50	319.45	487.67	386.39	385 40	384.59	383 10	383.33	383.79	385.78	549.35	447.92	445.09	448.27	443.77	448.96	444.81	516.47	508.95	574.51	579.94	573.07	569.41	696 95	821.54		205.93	997.13	457 45	514.87	519.07	833.35	10 366	10.622	245.31	265.23	285.96	285.09
002 22	260.00	01.134	01.134 66.134	66.134 66.134	66.134	66.134	80.636	80.078	80.078	80.078	80.078	80.078	80.078	80.078	94.580	94.022	80.636	94.022	94.022	94.022	94.022	97.070	107.966	111.014	121.910	121.910	121.910	149.798	177.676		36.190		70.910	84.854	84.854	131.462	27 070	010.10	41.726	46.374	51.022	51.022
66 711	00.111	017.10	66.980	66.781	66.503	66.601	67.942	80.421	80.177	79.934	80.309	79.577	80.230	80.218	94.837	94.177	102.058	93.947	94.547	93.705	93.615	98.632	109.188	110.714	121.890	121.650	120.613	149.409	178.982		37.134		71.144	85.931	84.976	130.829	37 462	001-10	42.331	47.056	51.773	52.094
1 4571	1 4059	1 4883	1.4080	1.4035	1.3968	1.3879	1.4622^{c}	1.4190	1.4156	1.4124	1.4075	1.4080	1.4097	1.4170	1.4626	1.4250	1.4160	1.4261	1.4118°	1.4283	1.4151	1.5546	1.4280	1.5349°	1.4360	1.4381	1.4289	1.4440	1.4494^{c}		1.4302°	1.4374°	1.4290	1.4215	1.4331	1.4408	1 5059	100011	1.4960	1.4900	1.4891	1.4846
1 190	1 419	1.4028	0.8567	0.842	0.8290	0.8153	1.350	0.8549	0.8514	0.8482	0.8298	0.844	0.8337	0.8470	1.090	0.8471	0.7693	0.8520	0.823	0.8572	0.841	1.079	0.8398	1.064	0.8548	0.857	0.8642	0.8581	0.845		0.9976		1.160	1.070	1.108	1.167	1,1890		1.1316	1.0937	1.0707	1.0558
	1.4956				1.3946°		1.4618				1.4044°		1.4061°	1.4134°		1.4214°	1.4138	1.4230	1.4096	1.4247		1.5537°		1.5420		1.4363°	1.4362°		1.4463°	0007	1.4280	1.4343										
20	19	20	20	20	25	20	20	20	20	20	27	20	28	$\frac{28}{2}$	20	28	97. 77	17	24.8	28	50	22	20	4	20	24	4	20	27	10	20	27	20	20	20	20	20		20	20	20	20
291.434	394.781	394.781	230.168	230.168	230.168	230.168	333.515	272.249	272.249	272.249	272.249	272.249	272.249	272.249	375.596	314.330	314.330	314.33U	314.33U	014.050	314.330	332.219	356.411	374.300	398.492	398.492	398.492	482.654	566.816	000 671	143.990	158.017	320.120	362.201	362.201	578.396	149.953		163.980	178.007	192.034	192.034
(2)	(2)	(31)	(3)	(35)	(35)	(39)	(14)	(35)	(11)	(39)	(56)	(20)	(96)	(56)	(2)	(00)	(00)	(00)	(00)	(00)	(70)	(96)	(2)	(61)	(?)	(58)	(11)	(3)	(58)	(38)	(oc)	(38)	(91)	(91)	(91)	(16)	(21)		(21)	(21)	(21)	(21)
(CH2CICH2CH2O)3B	(CH ₂ CICHCICH ₂ O) ₃ B	(CHCl ₂ CH ₂ O) ₃ B	$(C_{i}H_{i}O)_{3}B$													[C.H.CH(CH_)]B	CHCH(CH_)CH_OLR	I(CH_),CHCH_CHICH_IL	[(C,H,),CHCH,OLR	I(CH.), CCH(CH.)OLR	(n-CH_CLH_O).R	(C.H.O).R								$C_4H_9OBOCH_3CH_9O$		C ₈ H ₀ OBOCH ₂ CH ₂ O					$CH_3OBOC_6H_1(0)O$		$C_3H_sOBOC_6H_4(o)O$	C ₃ H ₇ OBOC ₆ H ₁ (0)O	$C_{4}H_{5}OBOC_{6}H_{4}(0)O$	$(CH_s)_2CHCH_2OBOC_6H_4(o)O$
183	184	C 2 7	180	101	190	100	101	161	103	101	105	1961	197	198	199	200	201	202	203	204	205	206	202	208	006	012	511	919	773	213		214	612	017	010	017	219	000	220	221	222	223

(Continued on page 250)

No. Compound L. M $r_{\rm ch}$ $r_{$		Table	e II. Molar Ve	alues for Org	anoboron (Compound	s (Continuec	(
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Lit.						Lorenz-I Molar Ref	Lorentz ractivity"	Eisenlob Refraction	ır Molar 1 Product ⁶
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Jo.	Compound	Ref.	Μ	t	n_{1}^{\prime}	d'_i	n ²⁰	Obsd.	Calcd.	Obsd.	Calcd.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4 C_2 H_5 CH(CH_3) OB$	$OC_6H_4(0)O$	(21)	192.034	20		1.0704	1.4853	51.445	51.022	285.23	287.10
$ \begin{array}{ccccc} 226 & \mathrm{CH-OBOC-H}(\mathrm{olo}) & (21) & 248,112 & 29 & 1.018 & 1.486 & 70.08 \\ 277 & \mathrm{CHASDOC-H}(\mathrm{olo}) & (21) & 284,208 & 29 & 1.518 & 1.538 \\ 289 & \mathrm{CHASDOC-H}(\mathrm{olo}) & (21) & 284,208 & 29 & 1.518 & 1.538 \\ 289 & \mathrm{CHASDOC-H}(\mathrm{olo}) & (21) & 284,208 & 29 & 1.518 & 1.518 & 1.508 $	5 C ₅ H ₁₁ OBOC ₆ H ₄ (0	-0	(21)	206.061	20		1.0578	1.4891	56.232	55.670	306.84	307.70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16 C _s H ₁₇ OBOC ₆ H ₄ (0	-0	(21)	248.142	20		1.0158	1.4856	70.086	69.614	368.64	369.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{4}H_{3}SBOC_{6}H_{4}(0)$	-0 Г	(21)	208.100	20			1.5334			319.10	318.98
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{\rm s}H_{\rm rr}SBOC_{\rm 6}H_{\rm 4}(0)$	- <u>o</u> [(21)	264.208	20			1.5198			401.54	401.38
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(C_2H_5)_2NBOC_6H_4$	(0)	(21)	191.050	20			1.5061			287.74	287.30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$0 \qquad (C_4H_9)_2 NBOC_6H_4$	(o) 0	(21)	247.158	20			1.4971			370.02	367.70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 (CH ₃) ₃ CBOC ₆ H ₄ (22 (C ₂ H ₅ BO) ₃	-00	(21) (40)	176.034 167.646	30 32 30	1.4879° 1.3958	$1.016 \\ 0.8963$	1.4924 1.3980°	49.910 44.922	49.982 44.791	262.71 234.37	265.96 241.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(CH_2 = CHCH_2B($)) ₃	(51) (40)	203.679 209.727	20 25	1 4080	0.9318 0.8746	1.4435 1 4109°	58.006 59.157	57.301 58 735	294.01 995 76	299.19 209.89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(CH ₃) ₂ CHBO]		(40)	209.727	25	1.4305	0.8558	1.4327	63.371	58.735	300.48	302.82 302.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(C,H,BO)_{3}$	-	(40)	251.808 951 909	25 91	1.4175	0.8718	1.4197	72.712	72.769	357.49	364.62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37 ј(СН _а)2СНСН2В0 18 (С5Н11ВО)3	رل. ا	(40)	201.808 293.889	52 79	1.4127 1.4275	0.8540 0.8675	1.4149 1.4297	73.477 87.070	72.769 86.623	356.28 420.17	304.62 426.42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(C_6H_{13}BO)_3$		(40)	335.970	25	1.4337	0.8654	1.4359	101.041	100.567	482.42	488.22
24. C.H.BNH) 20. 2	(CH ₃ BNH) ₃ 1 (CH ₃ BNH) ₃		(30)	122.613 164 694	20		0.8681 0.9597	1.4404	37.254 40.007	38.210 59.154	176.61	186.80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(C_aH_bBNH)_a$		(30)	206.775	202		0.8471	1.4484	49.301 65.396	02.104 66.104	299.49 299.49	240.00 310.40
244 $[(CH_a)_{a}CHCH_{a}CHCH_{a}BNCH_{a}^{1},$ (49) 290.937 20 0.8485 1.4538 92.8	(CH ₃) ² CHBNH		(30)	206.775	20		0.8631	1.4434	63.563	66.104	298.46	310.40
246 $(C_{H_3} = CHCH_3BNCH_3)_3$ $(C_{H_3} = BNCH_3)_3$ (S_3) 290.937 22.5 1.4770 1.4807 1.4770 249 $(C_{H_3} = BNCH_3)_3$ (S_3) 290.377 22.5 1.4807 1.4770 250 $(C_{H_3} = BNCH_3)_3$ (f) (f) 290.377 22.5 1.4706 1.4770 251 $(C_{H_3} = BNC_4)_3$ (f) 233.904 200 1.4870 1.4870 253 $(C_{H_3} = BNC_4)_3$ (f) 233.904 200 0.933 1.4828 118.00 253 $(C_{H_3} = BNC_4)_3$ (f) 462.228 200 0.933 1.4656 144.42 255 $(C_{H_3} = BNC_4)_3$ (f) 462.228 200 0.900 1.4730 144.42 256 $(C_{H_3} = BNC_H_3)_3$ (f) 462.228 200 0.803 <td>H (CH₃)²CHCH₂C)</td> <td>H₂BNH]₃</td> <td>(49)</td> <td>290.937 206 775</td> <td>20 29 5</td> <td>1 4791</td> <td>0.8485</td> <td>1.4538 1.480%</td> <td>92.819</td> <td>93.986</td> <td>422.96 206.07</td> <td>434.00 205 1 8</td>	H (CH ₃) ² CHCH ₂ C)	H ₂ BNH] ₃	(49)	290.937 206 775	20 29 5	1 4791	0.8485	1.4538 1.480%	92.819	93.986	422.96 206.07	434.00 205 1 8
$ \begin{array}{rclcrc} 247 & (C,H_3BNCH_3)_3 \\ 248 & (C,H_3BNCH_3)_3 \\ (C,H_3B_3CI)(NCH_3)_4 \\ (C,H_3B_2CI)(NCH_3)_4 \\ (C,H_3B_2CI)(NCH_3)_4 \\ 250 & (C,H_3NHBNC_3H_3)_4 \\ 251 & (C,H_3NHBNC_4H_3)_4 \\ 251 & (C,H_3NHBNC_4H_3)_4 \\ 252 & (C,H_3NHBNC_4H_3)_4 \\ 253 & (C,H_3NHBNCH(CH_3)_2 \\ 254 & [C,H_3,CNNHBNCH(CH_3)_2 \\ (C,H_3,CNNHBNCH(CH_3)_2 \\ 254 & [C,H_3,CNNHBNCH(CH_3)_2 \\ 254 & [C,H_3,CNNBNCH(CH_3)_3 \\ 255 & (C,H_3,NHBNCH(CH_3)_3 \\ 256 & (C,H_3,NHBNCH(CH_3)_4 \\ 256 & (C,H_3,CNNBNCH_3)_3 \\ 256 & (C,H_3,CNBBNCH_3)_3 \\ 257 & (C,H_3,CNBBNCH_3)_3 \\ 256 & (C,H_3,CNBBNCH_3)_3 \\ 257 & (C,H_3,DBNCH_3)_3 \\ 257 & (C,H_3,DBNCH_3)_3 \\ 257 & (C,H_3,DBNCH_3)_3 \\ 258 & (C,H_3,DBNCH_3)_3 \\ 258 & (C,H_3,DBNCH_3)_3 \\ 258 & (C,H_3,DBNCH_3)_3 \\ 258 & (C,H_3,DBNCH_3)_3 \\ 251 & (C,H_3,DBNCH_3)_3 \\ 252 & (C,H_3,DBNCH_3)_3 \\ 253 & (C,H_3,DBNCH_3)_3 \\ 254 & (C,H_3,DBNCH$	$16 \qquad (CH_2 = CHCH_2B)$	NCH ₃) ₃	(53)	242.808	22.5	1.5047		1.5058°			365.62	363.35 363.35
240 (Uc,H,B,P,CB)(INUCHA), (3) 203-2.10 L+400 L+414 L+4140 L+400 L+414 L+414 <thl+414< th=""> <thl+414< th=""> L+4146</thl+414<></thl+414<>	(C,H,BNCH ₃)		(53)	290.937 960.979	22.5 90 f	1.4759		1.4770°			429.71	428.78
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{10}{100} = \frac{1}{100} \frac$	$\frac{1}{3}$	(23)	247.619	22.5 22.5	1.4876		1.4887° 1.4887°			368.63 368.63	398.08 367.38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 (CH _a NHBNCH _a)		(4)	209.742	20		1.016	1.5082	61.558	62.493	316.33	312.63
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01 (C2H5NHBNC2H 03 [(CH1,),CHNHRN	s) <u>з</u> ИСН(СН _.), L	(4)	293.904 378 066	02 Q		0.933	1.4826 1.4698	89.901 118.017	90.381 119.960	435.74 552 02	436.23 red 02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i3 (C,H,NHBNC,H	9)a	(4)	462.228	2 ²		0.900	1.4730	144.076	146.157	680.86	683.43
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$[C_2H_5CH(CH_3)N]$	$HBNCH(CH_3)C_2H_5 _3$	(4)	462.228	20		0.892	1.4695	144.445	146.157	679.24	683.43
Z50 (Certis) (Certis) (4) 000.10 1.100 1.100 1.042 200.10 257 (C.H.OBNCH.). (6) 210.694 23 1.4610 1.4624 200.10 258 (C.H.OBNCH.). (6) 254.775 22.5 1.4540 1.4614 1.4614 259 (C.H.).CHOBNCH.). (6) 296.856 22.5 1.4540 1.4570 260 [(CH.).CHOBNCH.]. (6) 296.856 23 1.4561 1.4570 260 [(CH.).CHOBNCH.]. (6) 296.856 23 1.4460 1.4474 261 (C.H.).CHOBNCH.]. (6) 338.937 23 1.4570 1.4566	55 (CH ₃) ₂ CNHBN(22 (C H CH NHBN)	2(CH ₃)3]3 SU C U 2	(4)	462.228 666 220	20 8		0.883	1.4631	144.206	146.157 909 099	676.29	683.43
258 $(C_{s}H_{s}OBNCH_{3})^{3}$ (6) 254.775 22.5 1.4540 1.4511° 259 $(C_{s}H_{s}OBNCH_{3})^{3}$ (6) 296.856 $22.$ 1.4561 1.4570° 260 $[(CH_{3})_{s}CHOBNCH_{3})^{3}$ (6) 296.856 23 1.4460 1.4474° 261 $(C_{s}H_{s}OBNCH_{3})^{3}$ (6) 338.937 23 1.4570° 1.4474° 261 $(C_{s}H_{s}OBNCH_{3})^{3}$ (6) 338.937 23 1.4560 1.4474°	CH_OBNCH_).	CI12C6115/3	(1)	212.694	23 23	1 4610	001.1	1.042 1.4694°	001.002	070.007	311 04 311 04	1055.18 306 80
259 $(C_3H, OBNCH_3)_3$ (6) 296.856 22 1.4561 1.4570' 260 $[(CH_3)_5 CHOBNCH_3]_3$ (6) 296.856 23 1.4460 1.4474' 261 $(C_4H_3OBNCH_3)_3$ (6) 338.937 23 1.4460 1.4456' 261 $(C_4H_3OBNCH_3)_3$ (6) 338.937 23 1.4562 1.4586'	$(C_2H_6OBNCH_3)_3$		(9)	254.775	22.5	1.4540		1.4511°			369.70	368.60 368.60
260 $ (CH_3)_2CHOBNCH_3 _3$ (6) 296.856 23 1.4460 1.4474 ^e 261 $(C_4H_3OBNCH_3)_3$ (6) 338.937 23 1.4572 1.4586 ^e	59 (C ₃ H ₇ OBNCH ₃) ₃		(9)	296.856	22	1.4561		1.4570°			432.52	430.40
	30 [(CH ₃) ₂ CHUBNU 31 (C ₄ H ₉ OBNCH ₃) ₃	$(\mathbf{H}_3)_3$	(9) (9)	296.856 338.937	23 23	1.4460 1.4572		1.4474° 1.4586°			429.67 494.37	430.40 492.20
• $MR_{\rm L} = \frac{n^2}{N^2 + 9} \frac{1}{d}$. ^b $MR_{\rm B} = Mn_{\rm D}^{20}$. ^c Corrected by use of coefficient -0.00045°/° C.	$AR_{\rm L} = \frac{n^2}{N^2 + 2} - \frac{1}{d} \frac{M}{d}$. ^b MR	$_{\rm B} = Mn_{\rm D}^{20}$ ² Corrected by use of coe	efficient -0.000	45°/° C.								

impartial comparison of the four systems, the coefficient of variation for each is shown:

	Refractivity (Lorenz-Lorentz)	Refraction Product (Eisenlohr)
Atomic (and group) Bond	$0.254 \\ 0.196$	$0.086 \\ 0.049$

The superiority of the empirical Eisenlohr system over that of Lorenz-Lorentz is thus indicated to be even greater than that of the bond over the atomic system.

A cursory glance at the data for the 12 tolyl derivatives (Nos. 98 to 109) shows unmistakable dependence of the numerical values for the C_{al}-C_{ar} bond on its ring position. It seems highly probable that future investigation based on a comprehensive study of aromatic compounds will substantiate and amplify this observation.

After the completion of the above work, least squares computations were repeated in which 30 boroxin and borazine derivatives (Nos. 232 to 261) were added to the first 231 compounds of Table II in order to ascertain whether distinctions should be made between cyclic and acyclic B-O and B-N bonds. The results indicated small differences but were so inconclusive that no purpose appears to be served at present in assigning special values to the bonds of ring atoms. Hence data for these cyclic derivatives are listed separately in Table II, and the parameters of Table I were tested further by calculating coefficients of variation for the cyclic compounds alone:

Refractivity	Refraction Product
(Lorenz-Lorentz)	(Eisenlohr)
0.103	0.073

Omitting Compound 256, for which there is a large discrepancy in the calculated Eisenlohr refraction product, the coefficients are 0.103 and 0.049, respectively.

ACKNOWLEDGMENT

The author thanks the Chemistry Department of Yale University for the use of its library facilities, A.M. Schneider of the Dewey and Almy Division of W.R. Grace & Co. for helpful advice in the numerical part of this work, and William von E. Doering of the Yale Chemistry faculty for his friendly interest.

LITERATURE CITED

- Abel, E.W., Dandegaonder, S.H., Gerrard, W., Lappert, (1)M.F., J. Chem. Soc. 1956, 4697.
- Abel, E.W., Edwards, J.D., Gerrard, W., Lappert, M.F., (2)Ibid., 1957, 501.
- (3)Arbuzov, B.A., Vinogradova, V.S., Compt. rend. acad. Sci. (U.R.S.S.) 55, 411 (1947). Aubrey, D.W., Lappert, M.F., J. Chem. Soc. 1959, 2927.
- (4)
- Borisov, A.E., Izvest. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk (5)1951, 402.
- Bradley, M.J., Ryschkewitsch, G.E., Sisler, H.H., J. Am. (6)Chem. Soc. 81, 2635 (1959)
- Brindley, P.B., Gerrard, W., Lappert, M.F., J. Chem. Soc. (7)1955, 2956.
- Ibid., 1956, 824. (8)
- Brown, H.C., Tsukamoto, A., J. Am. Chem. Soc. 82, 746 (9)(1960)
- (10)Christopher, P.M., Tully, T.J., Ibid., 80, 6516 (1958).
- Cowley, E.G., Partigton, J.R., Nature 163, 643 (1935). (11)Dandegaonder, S.H., Gerrard, W., Lappert, M.F., J. Chem. (12)Soc. 1957, 2872.

- (13)Denbigh, K.G., Trans. Faraday Soc. 36, 936 (1940).
- (14)Edwards, J.D., Gerrard, W., Lappert, M.F., J. Chem. Soc. 1955, 1472.
- (15)Eisenlohr, F., "Spektrochemie Organischen Vergindungen," pp. 12-14, Enke, Stuttgart, 1912.
- Frazer, M.J., Gerrard, W., J. Chem. Soc. 1955, 2959. (16)
- (17)Gerrard, W., Lappert, M.F., Ibid., 1951, 1020.
- Ibid., 1951, 2545. (18)
- (19)
- Gerrard, W., Lappert, M.F., Chem. Ind. (London) 1952, 53. Gerrard, W., Lappert., M.F., J. Chem. Soc. 1955, 3084. Gerrard, W., Lappert, M.F., Mountfield, B.A., Ibid., 1959, (20)
- (21)1529.
- Gerrard, W., Lappert, M.F., Pearce, C.A., Ibid., 1957, 381. (22)(23)Gerrard, W., Lappert, M.F., Pearce, C.A., Chem. Ind. (London) 1958, 292.
- (24)Gerrard, W., Lappert, M.F., Shafferman, R., J. Chem. Soc. 1957. 3828.
- (25)Haider, S.J., Khundkar, M.H., Siddiqullah, Md., J. Applied Chem. 4, 93 (1954)
- Hennion, G.F., McCusker, P.A., Ashby, E.C., Rutkowski, (26)A.J., J. Am. Chem. Soc. 79, 5190 (1957).
- (27)Hennion, G.F., McCusker, P.A., Marra, J.V., Ibid., 80, 3481 (1958).
- (28)Ibid., 81, 1768 (1959).
- Hennion, G.F., McCusker, P.A., Rutkowski, A.J., Ibid., 80, (29)617 (1958)
- Hough, W.V., Schaeffer, G.W., Dzurus, M., Stewart, A.C., (30)Ibid., 77, 864 (1955),
- (31)Jones, W.J., Thomas, L.H., Pritchard, E.H., Bowden, S.T., J. Chem. Soc. 1946, 824.
- Krause, E., Nitsche, R., Ber. 54, 2784 (1921). (32)
- (33)Lappert, M.F., J. Chem. Soc. 1955, 787.
- (34)Ibid., 1956, 1768.
- Lappert, M.F., Chem. Rev. 56, 969 (1956). (35)
- Ibid., 56, 1053 (1956). (36)
- (37) Lettsinger, R.L., Remes, N., J. Am. Chem. Soc. 77, 2489 (1955).
- (38)Lettsinger, R.L., Skoog, I., Ibid., 76, 4174 (1954).
- Lippincott, S.B., U.S. Patent 2642453 (June 15, 1953). (39)
- McCusker, P.A., Ashby, E.C., Makowski, H.S., J. Am. Chem. (40)Soc. 79, 5179 (1957).
- Ibid., 79, 5182 (1957). (41)
- (42)McCusker, P.A., Glunz, L.J., Ibid., 77, 4253 (1955).
- McCusker, P.A., Hennion, G.F., Ashby, E.C., Ibid., 79, 5192 (43)(1957).
- (44)McCusker, P.A., Makowski, H.S., Ibid., 79, 5185 (1957).
- McCusker, P.A., Ostdick, T., Ibid., 80, 1103 (1958). (45)
- Mikhailov, B.M., Aronovich, P.M., Izvest. Akad. Nauk (46)S.S.S.R., Otdel. Khim. Nauk 1957, 1123.
- Mikhailov, B.M., Bazhenova, A.V., Ibid., 1959, 76. (47)
- Mikhailov, B.M., Bubnov, Yu. N., Ibid., 1959, 172. (48)
- Mikhailov, B.M., Kozminskaya, T.K., Doklady Akad. Nauk (49)S.S.S.R. 121, 656 (1958).
- Mikhailov, B.M., Kozminskaya, T.K., Fedotov, N.S., (50)Dorokhov, V.A., Ibid., 127, 1023 (1959).
- Mikhailov, B.M., Tutorskaya, F.B., Ibid., 123, 479 (1958). (51)
- Mikhailov, B.M., Vaver, V.A., Bubnov, Yu. N., Ibid., 126, (52)575 (1959).
- (53)Ryschkewitsch, G.E., Harris, J.J., Sisler, H.H., J. Am. Chem. Soc. 80, 4515 (1958).
- Sayre, Ralph, Ibid., 80, 5438 (1958). (54)
- Sayre, Ralph, J. CHEM. ENG. DATA 6, 560 (1961). (55)
- (56)Scattergood, A., Miller, W.H., Gammon, J., Jr., J. Am. Chem. Soc. 67, 2150 (1945)
- Shepherd, J.W., Callery Chemical Co., Callery, Pa., private (57)communication.
- Steinberg, H., Hunter, D.L., Ind. Eng. Chem. 49, 174 (1957). (58)
- (59)Torssell, K., Acta Chem. Scand. 8, 1779 (1954).
- (60)Ibid., 9, 239 (1955).
- *Ibid.*, 9, 242 (1955) (61)
- (62)Vickery, B.C., Denbigh, K.G., Trans. Faraday Soc. 45, 61 (1949).
- Vogel, A.I., J. Chem. Soc. 1948, 1842. (63)
- Vogel, A.I., Cresswell, W.T., Jeffery, G.H., Leicester, J., (64)Ibid., **1952**, 531.
- (65)Weidmann, H., Zimmerman, H.K., Jr., J. Phys. Chem. 64, 182 (1960).

RECEIVED for review July 16, 1962. Accepted September 28, 1962.